Search results for "Lipschitz map"

showing 8 items of 8 documents

RADEMACHER'S THEOREM IN BANACH SPACES WITHOUT RNP

2017

Abstract We improve a Duda’s theorem concerning metric and w *-Gâteaux differentiability of Lipschitz mappings, by replacing the σ-ideal 𝓐 of Aronszajn null sets [ARONSZAJN, N.: Differentiability of Lipschitzian mappings between Banach spaces, Studia Math. 57 (1976), 147–190], with the smaller σ-ideal 𝓐 of Preiss-Zajíček null sets [PREISS, D.—ZAJÍČEK, L.: Directional derivatives of Lipschitz functions, Israel J. Math. 125 (2001), 1–27]. We also prove the inclusion C̃ o ⊂ 𝓐, where C̃ o is the σ-ideal of Preiss null sets [PREISS, D.: Gâteaux differentiability of cone-monotone and pointwise Lipschitz functions, Israel J. Math. 203 (2014), 501–534].

Pure mathematicsRademacher's theoremSettore MAT/05 - Analisi MatematicaGeneral Mathematics010102 general mathematics0103 physical sciencesBanach spaceLipschitz maps Radon-Nikodym property metric Gateaux differentiability w-Gòateaux differentiability.010307 mathematical physics0101 mathematics01 natural sciencesMathematics
researchProduct

Universal differentiability sets and maximal directional derivatives in Carnot groups

2019

We show that every Carnot group G of step 2 admits a Hausdorff dimension one `universal differentiability set' N such that every real-valued Lipschitz map on G is Pansu differentiable at some point of N. This relies on the fact that existence of a maximal directional derivative of f at a point x implies Pansu differentiability at the same point x. We show that such an implication holds in Carnot groups of step 2 but fails in the Engel group which has step 3.

Pure mathematicsCarnot groupGeneral MathematicsDirectional derivative01 natural sciencesdifferentiaaligeometriasymbols.namesake0103 physical sciencesFOS: MathematicsCarnot group; Directional derivative; Lipschitz map; Pansu differentiable; Universal differentiability set; Mathematics (all); Applied MathematicsMathematics (all)Point (geometry)Differentiable function0101 mathematicsUniversal differentiability setEngel groupMathematics43A80 46G05 46T20 49J52 49Q15 53C17Directional derivativeuniversal differentiability setApplied Mathematicsta111010102 general mathematicsCarnot group16. Peace & justiceLipschitz continuityPansu differentiableFunctional Analysis (math.FA)Mathematics - Functional AnalysisHausdorff dimensionsymbols010307 mathematical physicsLipschitz mapfunktionaalianalyysiCarnot cycledirectional derivative
researchProduct

Rademacher Theorem for Fréchet spaces

2010

Abstract Let X be a separable Frechet space. In this paper we define a class A of null sets in X that is properly contained in the class of Aronszajn null sets, and we prove that a Lipschitz map from an open subset of X into a Gelfand-Frechet space is Gateaux differentiable outside a set belonging to A. This is an extension to Frechet spaces of a result (see [PZ]) due to D. Preiss and L. Zajicek.

Discrete mathematicsNull (mathematics)Space (mathematics)Lipschitz continuitySeparable spaceCombinatoricsRademacher's theoremMathematics (miscellaneous)Fréchet spaceSettore MAT/05 - Analisi MatematicaDifferentiable functionMetric differentialMathematicsLipschitz maps Gateaux differentiability Rademacher theorem.
researchProduct

Lipschitz operator ideals and the approximation property

2016

[EN] We establish the basics of the theory of Lipschitz operator ideals with the aim of recovering several classes of Lipschitz maps related to absolute summability that have been introduced in the literature in the last years. As an application we extend the notion and main results on the approximation property for Banach spaces to the case of metric spaces. (C) 2015 Elsevier Inc. All rights reserved.

Discrete mathematicsPure mathematicsApproximation propertyLipschitz mappingApplied Mathematics010102 general mathematicsBanach space010103 numerical & computational mathematicsLipschitz operator idealLipschitz continuity01 natural sciencesMetric spaceOperator (computer programming)Lipschitz domainLipschitz absolutely summing operatorsMetric mapApproximation property0101 mathematicsMATEMATICA APLICADAAnalysisMathematics
researchProduct

Approximation problems in linear and non-linear analysis

2023

En esta tesis estudiamos problemas relacionados con aplicaciones de varios tipos que alcanzan su norma u operadores que alcanzan su radio numérico. Tras un capítulo introductorio donde se comentan las notaciones, los principales conceptos, y un resumen histórico del estado del arte, hay 4 capítulos de contenido matemático donde se estudian diversos tipos de problemas. En el capítulo 2, se estudian clases de operadores entre espacios de Banach tales que cuando casi alcanzan su norma (respectivamente, su radio numérico) en un punto (respectivamente, un estado), necesariamente la alcanzan en un punto cercano (respectivamente, en un estado cercano). Se obtienen resultados positivos para dominio…

UNESCO::MATEMÁTICAS::Análisis y análisis funcional::Álgebra de operadoresUNESCO::MATEMÁTICAS::Análisis y análisis funcional::Algebras y espacios de Banachlipschitz mappingsprojective tensorsnumerical radius attainingnorm-attainingnuclear operatorsbishop-phelps-bollobásspaceabilityUNESCO::MATEMÁTICAS::Análisis y análisis funcional::Teoría de la aproximación
researchProduct

Differentiability of Lipschitz maps

2010

Lipschitz maps Gateaux-differentiability null sets in Banach spaces.
researchProduct

METRIC DIFFERENTIABILITY OF LIPSCHITZ MAPS

2013

AbstractAn extension of Rademacher’s theorem is proved for Lipschitz mappings between Banach spaces without the Radon–Nikodým property.

Mathematics::Functional AnalysisPure mathematicsGeneral MathematicsBanach spaceLipschitz continuityRadon-Nikodym PropertyLipschitz domainSettore MAT/05 - Analisi MatematicaLipschitz mapsMetric (mathematics)Metric mapMetric Diff erentiability.Differentiable functionMetric differentialSemi-differentiabilityMathematicsJournal of the Australian Mathematical Society
researchProduct

A decomposition theorem for σ-P-directionally porous sets in Fréchet spaces

2007

In this paper we study suitable notions of porosity and directional porosity in Fréchet spaces. Moreover we give a decomposition theorem for $\sigma$-$\mathcal{P}$-directionally porous sets.

Settore MAT/05 - Analisi Matematicalcsh:MathematicsDifferentiability of Lipschitz maps null setslcsh:QA1-939
researchProduct