Search results for "Lipschitz map"
showing 8 items of 8 documents
RADEMACHER'S THEOREM IN BANACH SPACES WITHOUT RNP
2017
Abstract We improve a Duda’s theorem concerning metric and w *-Gâteaux differentiability of Lipschitz mappings, by replacing the σ-ideal 𝓐 of Aronszajn null sets [ARONSZAJN, N.: Differentiability of Lipschitzian mappings between Banach spaces, Studia Math. 57 (1976), 147–190], with the smaller σ-ideal 𝓐 of Preiss-Zajíček null sets [PREISS, D.—ZAJÍČEK, L.: Directional derivatives of Lipschitz functions, Israel J. Math. 125 (2001), 1–27]. We also prove the inclusion C̃ o ⊂ 𝓐, where C̃ o is the σ-ideal of Preiss null sets [PREISS, D.: Gâteaux differentiability of cone-monotone and pointwise Lipschitz functions, Israel J. Math. 203 (2014), 501–534].
Universal differentiability sets and maximal directional derivatives in Carnot groups
2019
We show that every Carnot group G of step 2 admits a Hausdorff dimension one `universal differentiability set' N such that every real-valued Lipschitz map on G is Pansu differentiable at some point of N. This relies on the fact that existence of a maximal directional derivative of f at a point x implies Pansu differentiability at the same point x. We show that such an implication holds in Carnot groups of step 2 but fails in the Engel group which has step 3.
Rademacher Theorem for Fréchet spaces
2010
Abstract Let X be a separable Frechet space. In this paper we define a class A of null sets in X that is properly contained in the class of Aronszajn null sets, and we prove that a Lipschitz map from an open subset of X into a Gelfand-Frechet space is Gateaux differentiable outside a set belonging to A. This is an extension to Frechet spaces of a result (see [PZ]) due to D. Preiss and L. Zajicek.
Lipschitz operator ideals and the approximation property
2016
[EN] We establish the basics of the theory of Lipschitz operator ideals with the aim of recovering several classes of Lipschitz maps related to absolute summability that have been introduced in the literature in the last years. As an application we extend the notion and main results on the approximation property for Banach spaces to the case of metric spaces. (C) 2015 Elsevier Inc. All rights reserved.
Approximation problems in linear and non-linear analysis
2023
En esta tesis estudiamos problemas relacionados con aplicaciones de varios tipos que alcanzan su norma u operadores que alcanzan su radio numérico. Tras un capítulo introductorio donde se comentan las notaciones, los principales conceptos, y un resumen histórico del estado del arte, hay 4 capítulos de contenido matemático donde se estudian diversos tipos de problemas. En el capítulo 2, se estudian clases de operadores entre espacios de Banach tales que cuando casi alcanzan su norma (respectivamente, su radio numérico) en un punto (respectivamente, un estado), necesariamente la alcanzan en un punto cercano (respectivamente, en un estado cercano). Se obtienen resultados positivos para dominio…
Differentiability of Lipschitz maps
2010
METRIC DIFFERENTIABILITY OF LIPSCHITZ MAPS
2013
AbstractAn extension of Rademacher’s theorem is proved for Lipschitz mappings between Banach spaces without the Radon–Nikodým property.
A decomposition theorem for σ-P-directionally porous sets in Fréchet spaces
2007
In this paper we study suitable notions of porosity and directional porosity in Fréchet spaces. Moreover we give a decomposition theorem for $\sigma$-$\mathcal{P}$-directionally porous sets.